日韩av在线观看你懂的日韩成人在线|..日韩av毛片精品久久久|毛女人18毛片一区二区|av涩涩涩美女啪啪免费观看|后入喷水高潮在线|yy1111111人妻电影|中文字幕人妻少妇|强入人妻|少妇极品熟妇人妻av中文|校花被当众蹂躏呐p调教sm视,幻女毛片AA特级,中国毛片一级午夜,黑人配中国人妻的

站內(nèi)公告: 誠信為本:市場永遠(yuǎn)在變,,誠信永遠(yuǎn)不變,。

產(chǎn)品中心

行業(yè)新聞

>> 當(dāng)前位置: 首頁 > 新聞資訊 > 行業(yè)新聞 >

AI在內(nèi)容分發(fā)上的絆腳石

添加時間:2018-07-27 15:23:01

自從互聯(lián)網(wǎng)商業(yè)化發(fā)展以來,不論是新聞客戶端,、視頻網(wǎng)站或是電商平臺……所有的平臺,,都是把自己默認(rèn)為一個優(yōu)秀的飼養(yǎng)員,它按照自己的想法,,把內(nèi)容(飼料)Push(喂)給用戶,。

 

這些飼養(yǎng)員都是受過訓(xùn)練的專業(yè)人士,行話叫做---由網(wǎng)站編輯為用戶設(shè)置議程,,按照大多數(shù)用戶的口味挑選內(nèi)容,。

 

后來編輯實(shí)在忙不過來,采用機(jī)器幫忙---簡單的機(jī)器方式則是“熱門推薦”,,比如按照點(diǎn)擊量或其它數(shù)據(jù)來做排序,。

 

飼養(yǎng)員模式大的問題是不知道食客胃口如何,這會導(dǎo)致兩個顯著的后果:一是食客不滿意,,用戶個性化需求不能得到滿足,;二是自身資源浪費(fèi),大量長尾資源長期得不到曝光,,增加沉沒成本,。

 

有人發(fā)現(xiàn)了機(jī)器的好處。機(jī)器可以是根據(jù)用戶特征來推薦內(nèi)容,。正如一個高明的廚子可以根據(jù)每一個食客的口味提供飯菜,,如果機(jī)器足夠聰明,在一定程度上可以解決所有用戶的個性化需求,。這豈不是內(nèi)容產(chǎn)業(yè)的C2M,?

 

準(zhǔn)確的說,,這是內(nèi)容分發(fā)的C2M,它以單個用戶為對象進(jìn)行溝通,,跳出了大眾傳播/分眾傳播窠臼,,是不是足以革了所有的搜索引擎和門戶網(wǎng)站的命?

 

這種智能化的內(nèi)容C2M有深刻的時代背景,。今天,,你已經(jīng)站在時代邊緣,眼睜睜的看著AI技術(shù)點(diǎn)燃了IOT的引線,,接下來你將發(fā)現(xiàn)自己無可拒絕的進(jìn)入下一個信息核爆的時代:信息終端爆炸,、信息規(guī)模爆炸、信息平臺爆炸……

 

在信息高速公路上,,你開過的車,,你走過的路,全都變了規(guī)則,,你所熟悉的一切的基于飼養(yǎng)員模式的知識框架都面臨顛覆,。

 

在這個時代,飼養(yǎng)員模式已經(jīng)失靈了,,聰明的機(jī)器將成為大的變量,。

 

個出現(xiàn)的場景是人類生產(chǎn)內(nèi)容,機(jī)器分發(fā)內(nèi)容,。

 

下一個出現(xiàn)的場景是機(jī)器生產(chǎn)內(nèi)容,,機(jī)器分發(fā)內(nèi)容。

 

內(nèi)容產(chǎn)業(yè)面臨C2M革命,,行不行,?

 

“當(dāng)然不行,機(jī)器很蠢,?!比绻氵@樣想,那么很遺憾,,你注定是看不到明天的太陽了,。

 

“當(dāng)然行?!比绻氵@么想,,那么祝賀你掉進(jìn)坑里了。

 

真實(shí)的情況,,你可能意想不到。

 

一,、內(nèi)容C2M之路本質(zhì)是走向個體化溝通

 

作為一個獨(dú)立的研究方向,,推薦系統(tǒng)的源頭可以追溯到90年代初的協(xié)同過濾算法,,中期的代表則是傳統(tǒng)的機(jī)器學(xué)算法,比如Netflix大賽所推動的隱語義模型,,現(xiàn)在則是更加復(fù)雜的深度學(xué)模型,。

 

近些年,深度學(xué)突飛猛進(jìn),,使得機(jī)器推薦變成了整個互聯(lián)網(wǎng)的太陽,。在新技術(shù)的推動下,個性化溝通也變得更加可行,,而且越來越接近單用戶溝通,。

 

(一)協(xié)同過濾蹣跚起步

 

按照百科詞條解釋,協(xié)同過濾是利用用戶群體的喜好來為你推薦感興趣的信息,,這些用戶要么興趣相投,、要么具有共同經(jīng)驗(yàn),然后網(wǎng)站結(jié)合你的反饋(如評分),,進(jìn)行過濾分析,,進(jìn)而幫助別人篩選信息。

 

當(dāng)然,,用戶喜好不一定局限于特別感興趣的信息,,特別不感興趣信息的紀(jì)錄也相當(dāng)重要。協(xié)同過濾表現(xiàn)出了出色的效果,,開始在互聯(lián)網(wǎng)行業(yè)稱王稱霸,。

 

起先,協(xié)同過濾應(yīng)用于郵件過濾,。

 

1992年,,施樂公司的科學(xué)家提出了Tapestry系統(tǒng)。這是早應(yīng)用協(xié)同過濾系統(tǒng)的設(shè)計,,主要是解決Xerox公司在Palo Alto的研究中心資訊過載的問題,。這個研究中心的員工每天會收到非常多的電子郵件卻無從篩選分類,于是研究中心便發(fā)展這項(xiàng)實(shí)驗(yàn)性的郵件系統(tǒng)來幫助員工解決這項(xiàng)問題,。

 

接著,,協(xié)同過濾思路開始應(yīng)用于內(nèi)容推薦。

 

1994年,,美國Minnesota的GroupLens項(xiàng)目組創(chuàng)辦了一個新聞篩選系統(tǒng),,這個系統(tǒng)可以幫助新聞的閱聽者過濾其感興趣的新聞內(nèi)容,閱聽者看過內(nèi)容后給一個評比的分?jǐn)?shù),,系統(tǒng)會將分?jǐn)?shù)記錄起來以備未來參考之用,,假設(shè)前提是閱聽者以前感興趣的東西在未來也會有興趣閱聽,若閱聽者不愿揭露自己的身分也可以匿名進(jìn)行評分,。作為老牌的內(nèi)容推薦研究團(tuán)隊(duì),,GroupLens于1997年創(chuàng)建了電影推薦系統(tǒng)MovieLens,,還有性質(zhì)相近的音樂推薦系統(tǒng)Ringo,以及影音推薦系統(tǒng)Video Recommender等等,。

 

后來,,出現(xiàn)了另一個里程碑——電子商務(wù)推薦系統(tǒng)。

 

1998年,,亞馬遜的林登和他的同事申請的基于物品的協(xié)同過濾(item-to-item)技術(shù)專利,,是亞馬遜早期使用的經(jīng)典算法,一度引爆流行,。

 

協(xié)同過濾算不算人工智能,?從技術(shù)的角度來看,它也屬于AI范疇,。但必須指出的是協(xié)同過濾算法比較弱智,,無論是基于用戶的協(xié)同過濾,還是基于物品的協(xié)同過濾,,推薦效果總是差強(qiáng)人意,。

 

怎樣通過一個成體系的方法論來引導(dǎo)推薦系統(tǒng)的不斷優(yōu)化?如何才能把復(fù)雜的現(xiàn)實(shí)因素糅合到推薦結(jié)果中,?攻城獅們一度非常非常頭大,,重賞之下必有勇夫,后來,,終于有人發(fā)現(xiàn)了更加靈活的思路,。

 

(二)傳統(tǒng)機(jī)器學(xué)開始加速

 

2006年,Netflix宣布舉辦Netflix Prize,。Netflix是一家老牌的在線影片租賃網(wǎng)站,,舉辦大賽的目的旨在解決電影評分預(yù)測問題的機(jī)器學(xué)和數(shù)據(jù)挖掘問題。主辦方為此下了血本,,宣稱對于那些能夠?qū)etflix的推薦系統(tǒng)Cinematch的準(zhǔn)確率提升10%的個人或團(tuán)隊(duì),,獎勵100萬美元!

 

Netflix在自家blog上披露了許多龐大的數(shù)據(jù),,舉例如下:

 

  • 我們有幾十億的用戶評分?jǐn)?shù)據(jù),,并且以每天幾百萬的規(guī)模在增長。

  • 我們的系統(tǒng)每天產(chǎn)生幾百萬的播放點(diǎn)擊,,并且包含很多特征,,例如:播放時長、播放時間點(diǎn)和設(shè)備類型,。

  • 我們的用戶每天將幾百萬部視頻添加到他們的播放列表,。

 

顯然,在這些海量數(shù)據(jù)面前,,我們已經(jīng)不能靠由純?nèi)斯せ蛘咝⌒拖到y(tǒng)建立起來的分類標(biāo)準(zhǔn)對整個平臺用戶喜好進(jìn)行標(biāo)準(zhǔn)化,。

 

比賽開始一年后,,Korbell的團(tuán)隊(duì)以8.43%的提升贏得了個階段獎。他們付出了超過2000個小時的努力,,融合了107種算法。其中兩種有效的算法:矩陣分解(通常被叫做SVD,,奇異值分解)和局限型玻爾茲曼機(jī)(RBM),。

 

矩陣分解作為協(xié)同過濾的補(bǔ)充,核心是將一個非常稀疏的用戶評分矩陣R分解為兩個矩陣:User特性的矩陣P和Item特性的矩陣Q,,并用已知的數(shù)據(jù)構(gòu)建這些向量,,使用它們來預(yù)測未知的項(xiàng)。該算法在有效提高計算精度的同時,,還能夠加入各種建模元素,,使更多元化的信息融合進(jìn)來,更好地利用大量數(shù)據(jù),。

 

然而矩陣分解也有不足,。不足之處在于,矩陣分解和協(xié)同過濾算法一樣,,都屬于監(jiān)督學(xué)范疇,,粗糙且簡單,適用于小型系統(tǒng),。擺在網(wǎng)絡(luò)巨頭們面前的問題是,,如果需要建立一個大型推薦系統(tǒng),協(xié)同過濾和矩陣分解則會花費(fèi)較長的時間,。怎么辦,?

 

于是,一些攻城獅將眼光轉(zhuǎn)移到無監(jiān)督學(xué)中,。無監(jiān)督學(xué)中的聚類算法的本質(zhì)是識別用戶組,,并對這個組內(nèi)的用戶推薦相同的內(nèi)容。當(dāng)我們擁有足夠的數(shù)據(jù),,好使用聚類作為步,,來縮減協(xié)同過濾算法中相關(guān)鄰居的選擇范圍。

 

隱語義模型運(yùn)用了聚類分析方法,,其一大優(yōu)勢是既可以做評分預(yù)測,,又可以同時對文本內(nèi)容建模,使得通過內(nèi)容來進(jìn)行推薦的效果得到較大提升,。

 

傳統(tǒng)的分析方式在對用戶打標(biāo)簽,,并根據(jù)標(biāo)簽映射到結(jié)果的兩個步驟中準(zhǔn)確度不高。比如用戶填寫的年齡不一定真實(shí),,或者并非所有青少年都喜歡漫畫,。而隱語義模型的核心,,是超越這些表層語義標(biāo)簽的維度,通過機(jī)器學(xué)技術(shù),,挖掘用戶行為中更深層的潛在關(guān)聯(lián),,使得推薦精度更高。

 

Netflix Prize百萬美元武林大賽號令之下,,天下英才頻出,。2009年達(dá)到了一個高峰,成為推薦系統(tǒng)領(lǐng)域標(biāo)致性的事件,,這次比賽吸引了眾多專業(yè)人士投身于推薦系統(tǒng)領(lǐng)域的研究,,也讓這項(xiàng)技術(shù)從專業(yè)圈子滲透到了商業(yè)領(lǐng)域,引發(fā)了熱烈的討論并逐漸勾起了主流網(wǎng)站的垂涎,,基于內(nèi)容的推薦,、基于知識的推薦、混合推薦,、基于信任網(wǎng)絡(luò)的推薦等等走上了快速發(fā)展的通道,。

 

這些推薦引擎與協(xié)同過濾不同,例如基于內(nèi)容的推薦是建立在項(xiàng)目的內(nèi)容信息上作出推薦的,,而不需要依據(jù)用戶對項(xiàng)目的評價意見,,更多地需要用機(jī)器學(xué)的方法從關(guān)于內(nèi)容的特征描述的事例中得到用戶的興趣資料。內(nèi)容過濾主要采用自然語言處理,、人工智能,、概率統(tǒng)計和機(jī)器學(xué)等技術(shù)進(jìn)行過濾。

 

百萬美元花得值不值,?據(jù)2016年的Netflix用戶數(shù)據(jù):注冊會員6500萬人,,每天觀看視頻的總時長1億個小時。Netflix說,,每年靠這套系統(tǒng)能夠節(jié)省10億美元,。

 

(三)深度學(xué)帶來“無人駕駛”

 

近些年來,用戶的大痛點(diǎn)出現(xiàn),。智能手機(jī)的普及,,讓龐大的信息量和狹小的閱讀屏幕成為一對難以化解的矛盾,用戶閱讀場景不再是固守于電腦屏幕,,而是向移動化碎片化轉(zhuǎn)變,,搜索引擎失靈了,人工推薦忙不過來,,機(jī)器推薦也不夠用了,,這種轉(zhuǎn)變對大內(nèi)容平臺簡直是生死考驗(yàn)。能滿足需求則生,不滿足則死,。

 

面對這一問題,,YouTube和Facebook提出了新解決思路:運(yùn)用深度學(xué),制造聰明的機(jī)器,。近十年來,,深度學(xué)已經(jīng)取得了巨大的飛躍,對于解決大數(shù)據(jù)量更有優(yōu)勢,。

 

如果說人工內(nèi)容推薦如同司機(jī)開車,,那么深度學(xué)所帶來的內(nèi)容推薦,則如無人駕駛汽車,。在這種技術(shù)是利用用戶數(shù)據(jù)來“感知”用戶喜好,其推薦系統(tǒng)基本可以分為數(shù)據(jù)層,、觸發(fā)層,、融合過濾層和排序?qū)樱?dāng)數(shù)據(jù)層生成和存儲的數(shù)據(jù)進(jìn)入候選層后,,也就觸發(fā)了核心的推薦任務(wù),。

 

以YouTube為例,其新公開的推薦系統(tǒng)算法由兩個神經(jīng)網(wǎng)絡(luò)組成,,一個用于候選生成,,一個用于排序。首先,,以用戶的瀏覽歷史為輸入,,候選生成網(wǎng)絡(luò)可以顯著減小可推薦的視頻數(shù)量,從龐大的庫中選出一組相關(guān)的視頻,。

 

這樣生成的候選視頻與用戶的相關(guān)性高,,再進(jìn)一步對用戶評分進(jìn)行預(yù)測。這個網(wǎng)絡(luò)的目標(biāo),,只是通過協(xié)同過濾提供更廣泛的個性化,。排序網(wǎng)絡(luò)的任務(wù)則是仔細(xì)分析候選內(nèi)容,精選出少量優(yōu)選擇,。具體操作為根據(jù)視頻描述數(shù)據(jù)和用戶行為信息,,使用設(shè)計好的目標(biāo)函數(shù)為每個視頻打分,將得分高的視頻呈獻(xiàn)給用戶,。

 

在這種模式下,,機(jī)器全然接管了平臺。在深度學(xué)的持續(xù)訓(xùn)練下,,機(jī)器越來越聰明,,與人打交道的智商會逐漸提升,在某種意義上也逐漸承擔(dān)起看門狗的責(zé)任。

 

二,、內(nèi)容產(chǎn)業(yè)是否即將被C2M顛覆

 

世界之大無奇不有,,美國得克薩斯州科珀斯—克里斯蒂市一家銀行的一臺自動取款機(jī)(ATM)竟然在11日吐出了字條,上面寫著“救我”,,這條新聞很快傳遍中文網(wǎng)絡(luò),,成為許多網(wǎng)站的頭條。

 

你需要從N個網(wǎng)站上看到一模一樣的文章嗎,?

 

這些冗余的信息消耗了你的精力和流量,,就像你打開任何一個電視頻道,都能看到許多方便面廣告一樣,,讓人很難從大量的信息中快速找到自己想要的內(nèi)容,。

 

如何解決用戶信息冗余的尷尬?

 

過去曾經(jīng)有許多不成功的技術(shù)方案,,個人門戶曇花一現(xiàn),,RSS訂閱不成氣候,跨站跟蹤上不了臺面,。能引領(lǐng)未來者,,只有C2M。

 

C2M模式可以像今日頭條這樣應(yīng)用于全網(wǎng),,也可以像Facebook那般基于巨頭的平臺,。其核心就在于基于用戶行為慣、特征和訴求,,對海量的信息進(jìn)行提取,、分揀然后傳遞給用戶,這是克服痛點(diǎn)的秘密,。

 

但質(zhì)疑的聲音也不少,。比如有觀點(diǎn)認(rèn)為,協(xié)同過濾這樣的推薦容易讓用戶形成信息繭房,、無法識別閱讀場景,、即時性差、耗時長等缺點(diǎn),,而今日頭條這樣的模式也常常被詬病,,還要應(yīng)付難以捕捉的用戶興趣、用戶數(shù)據(jù)的隱私和管理等多項(xiàng)挑戰(zhàn),。

 

支持和質(zhì)疑各執(zhí)一端,,孰是孰非?未來雖有兩大機(jī)遇,,但是目前要跨越三座大山,。

 

1.支持的理由如下:

 

①千人千面,眾口可調(diào)。

 

個性化的內(nèi)容推薦機(jī)制能夠根據(jù)用戶的喜好為其推薦信息,。通過各種算法,,通過分析用戶的歷史行為,對比相關(guān)用戶和相關(guān)物品猜測用戶可能喜歡的內(nèi)容,,列出候選集并進(jìn)行驗(yàn)證,,用戶可以得到較為準(zhǔn)確的內(nèi)容,使信息分發(fā)做到千人千面,,實(shí)現(xiàn)內(nèi)容與用戶的精準(zhǔn)連接,,而不是傳統(tǒng)意義上的千人一面般的投放。

 

②海里撈針,,提高效率

 

個性化推薦省去了用戶在海量信息中進(jìn)行提取和搜尋的環(huán)節(jié),。用戶無需在海量信息中摸針,在一定程度上為用戶去除了部分無用信息,,縮小了用戶信息搜索的范圍,,提高了用戶的閱讀效率。

 

③投其所好,,增強(qiáng)粘性

 

不斷為用戶推薦適合他的內(nèi)容能夠增加用戶粘性。個性化推薦技術(shù)通過算法進(jìn)行用戶感興趣的內(nèi)容的精準(zhǔn)推薦,,幫助用戶快捷發(fā)現(xiàn)感興趣的內(nèi)容,,當(dāng)你看完一個內(nèi)容后,會立馬給你推薦相關(guān)的東西,,可以增加用戶粘性,,提高用戶體驗(yàn)。

 

④挖掘長尾,,打破兩極

 

個性化推薦能夠通過相關(guān)算法幫助用戶挖掘長尾內(nèi)容,,避免兩極分化的馬太效應(yīng)。當(dāng)A用戶喜歡比較冷門的長尾內(nèi)容,,而B用戶又有跟A用戶有相同或相似的興趣和行為慣時,,系統(tǒng)就能夠把A用戶喜歡的冷門內(nèi)容推薦給B用戶,這樣就使冷門內(nèi)容得到更多的曝光,,幫助用戶發(fā)現(xiàn)更多的長尾內(nèi)容,,避免內(nèi)容生產(chǎn)生態(tài)兩極分化。

 

⑤雙向交流,,深度優(yōu)化

 

基于用戶進(jìn)行個性化推薦是對用戶進(jìn)行深度分析和交流的結(jié)果,,提升了用戶的交互式體驗(yàn)。傳統(tǒng)的人工推薦是遍地撒網(wǎng)地推薦,,沒有對用戶進(jìn)行細(xì)致地劃分和篩選,,機(jī)器推薦以用戶特點(diǎn)和慣為基礎(chǔ)進(jìn)行推薦,用戶能夠得到雙向的交流和溝通,用戶的行為也能對下一步的推薦產(chǎn)生影響,,在一定程度上得到了反饋,,提升了用戶的交互式體驗(yàn)。

 

⑥分門別類,,運(yùn)營細(xì)化

 

個性化推薦也有利于平臺對內(nèi)容進(jìn)行分類,,從而利于平臺精細(xì)化管理和運(yùn)營。信息時使得平臺不斷涌現(xiàn),,各種形式的內(nèi)容越來越豐富,,用戶手機(jī)端展示的區(qū)域有限,個性化推薦能夠使商家更好地針對不同客戶對內(nèi)容進(jìn)行分類,,有利于精細(xì)化運(yùn)營,。

 

2.質(zhì)疑的觀點(diǎn)主要有:

 

①畫地為牢,思維設(shè)限

 

個性化新聞體驗(yàn)容易讓思想裹足不前,。個性化推薦的結(jié)果是基于用戶的歷史數(shù)據(jù)和歷史行為,,基于相似用戶或者相似物品進(jìn)行的推薦,在一定程度上將用戶感興趣的內(nèi)容固定在一個特定的閉環(huán)里,,在為用戶篩選信息的同時也為用戶隔斷了很多信息,。個性化推薦的內(nèi)容采集自你的興趣,又決定了你的興趣,。因此,,無法接觸“新”事物自然就不能培養(yǎng)新的興趣,容易讓用戶越來越狹隘,。

 

②人心變幻,,機(jī)器何解

 

機(jī)器推薦無法識別閱讀場景的變化而帶來的需求的變化,無法感知用戶為什么需要閱讀,,難以匹配人類情感的復(fù)雜程度,。例如在某一個階段,我們因?yàn)榇蠹叶荚谟懻撃臣露リP(guān)注這件事,,但這并不意味著我們對類似的事情都感興趣,。

 

③審美下線,好壞難分

 

個性化推薦的難度對推薦內(nèi)容的質(zhì)量帶來了挑戰(zhàn),。以往評價一篇文章的好壞對編輯來說都沒那么容易,,如今機(jī)器推薦很容易忽略質(zhì)量這一維度。機(jī)器算法不準(zhǔn)確會使標(biāo)題黨內(nèi)容混雜出現(xiàn),,機(jī)器推薦可能會把一篇沒有價值的文章推薦的很高,,也有可能把真正有價值的文章埋沒掉,機(jī)器推薦只能從外部數(shù)據(jù)來衡量你的文章有沒有價值,,目前還沒有辦法從內(nèi)容的本質(zhì)上分析有沒有價值,。

 

④耗時較長,,總慢半拍

 

基于海量數(shù)據(jù)的個性化推薦行為耗時較長,即時性較差,。如新聞推薦存在及時性問題,,需要不斷更新,通過分析用戶的歷史行為,、對比類似用戶等數(shù)據(jù)分析工作耗時較長,,不易在時間形成推薦結(jié)果。并且協(xié)同過濾等方法還存在冷啟動的問題,,即在用戶體驗(yàn)之初,,并未形成成熟的歷史數(shù)據(jù)時,需要經(jīng)過很長的時間收集用戶點(diǎn)擊日志數(shù)據(jù),,從而產(chǎn)生推薦,。

 

⑤熱點(diǎn)共通,個體趨同

 

并不是所有的用戶都彼此相等,,但協(xié)同過濾方法不考慮用戶之間的個體差異,。例如,我們觀察到娛樂新聞不斷推薦給大多數(shù)用戶,,即使用戶不點(diǎn)擊娛樂的故事,。原因是,娛樂新聞一般都是非常流行的,,因此總是從一個用戶的“鄰居”的娛樂故事足夠的點(diǎn)擊進(jìn)行推薦,。

 

3.未來的機(jī)遇在哪里?

 

未來的機(jī)遇在于兩大推動力:業(yè)界對長尾金礦的商業(yè)動力,;用戶強(qiáng)烈的個性化需求的推動。

 

①長尾金礦

 

個性化推薦能夠幫助用戶發(fā)現(xiàn)更多優(yōu)質(zhì)的長尾內(nèi)容,,提高平臺商業(yè)價值,。一般平臺用戶訪問的只局限在熱門的10%左右的內(nèi)容,很多小眾的,、冷門的內(nèi)容卻沉在數(shù)據(jù)庫中不易被發(fā)現(xiàn),,我們將其稱之為長尾內(nèi)容。

 

按長尾理論,,由于成本和效率的因素,,當(dāng)商品儲存流通展示的場地和渠道足夠?qū)拸V,商品生產(chǎn)成本急劇下降以至于個人都可以進(jìn)行生產(chǎn),,并且商品的銷售成本急劇降低時,,幾乎任何以前看似需求極低的產(chǎn)品,只要有賣,,都會有人買,。個性化推薦能夠通過協(xié)同過濾中基于用戶的推薦技術(shù)將小眾喜歡的長尾內(nèi)容擴(kuò)散開來,,充分挖掘長尾內(nèi)容,產(chǎn)生長尾金礦,。

 

②時代剛需

 

我們所處的時代已經(jīng)變化了,。經(jīng)過20年發(fā)展,互聯(lián)網(wǎng)變成了移動互聯(lián)網(wǎng),,現(xiàn)在即將融合AI進(jìn)入IOT時代,,終端和信息正在以核爆的態(tài)勢發(fā)生急劇膨脹,用戶在海量的數(shù)據(jù)中想要找到他們需要的信息將變得越來越難,。在這種情況下,,傳統(tǒng)的搜索引擎已經(jīng)力不從心。早先具代表性的就是分類目錄的雅虎和搜索引擎的谷歌,,已經(jīng)進(jìn)入死胡同,,想要通過搜索引擎去了解一個陌生領(lǐng)域的知識,效率極低,!

 

要滿足時代剛需,,希望在于個性化推薦。機(jī)器需要盡可能的了解用戶,,并且根據(jù)用戶的數(shù)據(jù),,主動推薦讓用戶有興趣和需求的信息。目前這20來年,,雖說取得了一點(diǎn)點(diǎn)成就,,但僅僅是唐僧取經(jīng)邁出了步,還有很長的路要走,。

 

4.當(dāng)下需要跨越的三座大山

 

個性化推薦在發(fā)展過程中面臨很多諸如難以預(yù)測用戶興趣,、用戶相關(guān)數(shù)據(jù)涉及隱私以及數(shù)據(jù)的處理難度等問題,都給個性化推薦帶來了很大的威脅和挑戰(zhàn),。

 

座山,,準(zhǔn)確。

 

用戶的興趣易受多重因素影響而不斷變化,,這對個性化推薦來說是個不可避免的挑戰(zhàn),。個性化推薦系統(tǒng)的基礎(chǔ)部分是用戶興趣建模,用戶興趣建模的質(zhì)量直接決定了個性化推薦的質(zhì)量,。但是用戶興趣隨時都會受到社交,、場景、環(huán)境等多重因素影響,,用戶興趣地不斷變化使得根據(jù)以往數(shù)據(jù)預(yù)測用戶未來傾向的工作變得很難,,也會影響推薦結(jié)果的準(zhǔn)確性。

 

第二座山,,隱私,。

 

對以用戶數(shù)據(jù)為基礎(chǔ)進(jìn)行的個性化推薦來說,,如何保護(hù)用戶隱私是個不小的難題。傳統(tǒng)的內(nèi)容推薦系統(tǒng)對用戶的頁面訪問記錄進(jìn)行數(shù)據(jù)挖掘,找出用戶的訪問慣,然后在服務(wù)器端根據(jù)用戶需求進(jìn)行信息篩選,,試圖為用戶提供信息推薦服務(wù)和垃圾信息過濾服務(wù),。但如何能在保護(hù)用戶隱私的同時,又為用戶提供更準(zhǔn)確的內(nèi)容推薦服務(wù)是一個不小的挑戰(zhàn)。

 

第三座山,,價值觀,。

 

除了三座大山外,還有一個問題也值得重視?,F(xiàn)在的機(jī)器推薦等于“沒有三觀”,、“沒有審美”,在中文圈運(yùn)營,,由于眾所周知的原因,,一定會遇到相當(dāng)?shù)奶魬?zhàn)。

 

流量造假和作弊是比較明顯的例子,。比如有網(wǎng)友告訴筆者說:網(wǎng)上經(jīng)??吹揭恍┮曨l學(xué)人數(shù)幾萬、幾十萬,,數(shù)字大的得令我們懷疑人生,,結(jié)果測試了一下,頁面刷新一次人數(shù)就加三而新課程加幾十,,瞬間明了,。半夜測試某些視頻直播,對著墻拍,,從啟動直播十分鐘直播粉絲還能蹭蹭往上漲,,進(jìn)一個真粉絲時人數(shù)又一波漲,作弊一時爽,,但心里不踏實(shí),。

 

曾經(jīng)有企業(yè)在智能推薦的客戶端上投過一些非常垂直大號的廣告,有的效果真好,,有的造假太明顯---在閱讀量瞬間破萬的時候帶過來的流量,還不如自己閱讀破千的號效果好,。如此種種,,數(shù)據(jù)是正經(jīng)的,就看用它的人正經(jīng)不正經(jīng)了,。

 

未來,,個性化推薦如何在技術(shù)和管理上繼續(xù)革新,人工智能因素的參與能否改善現(xiàn)存的諸多問題,,為用戶產(chǎn)生更優(yōu)質(zhì)的推薦結(jié)果將成為一個重要課題,。

 

三,、巨頭正在開辟的技術(shù)路線

 

其實(shí),無論支持還質(zhì)疑有多么大,,個性化推薦已經(jīng)引得無數(shù)巨頭競折腰,。

 

目前在市場上,依然是新老技術(shù)各占一方地盤,,新派深度學(xué)技術(shù)快速崛起,,咄咄逼人;老派技術(shù)也在不斷優(yōu)化,,以防不測,。新老技術(shù)之爭,是當(dāng)下的一個熱點(diǎn),,也是決定未來發(fā)展的兩大路線,。

 

(一)老派技術(shù)認(rèn)為:傳統(tǒng)推薦技術(shù)可以自我完善

 

1.Google新聞的套路,不斷優(yōu)化

 

Google新聞是一個在線信息門戶站點(diǎn),,它聚集數(shù)千家信息源的新聞報道(在將相似新聞分組后)并以個性化的方法展現(xiàn)給登錄用戶,。由于文章和用戶數(shù)量巨大,以及給定的響應(yīng)時間要求,,純粹的基于記憶的方法是不適用的,,需要一種可擴(kuò)展的算法,因此Google新聞組合使用了基于模型和基于記憶的技術(shù),。

 

Google新聞的套路依然是協(xié)同過濾的底子,。它在個性化推薦方面采用的是基于模型和基于記憶的技術(shù)相結(jié)合的協(xié)同過濾技術(shù)。根據(jù)《推薦系統(tǒng)》一書的介紹,,基于模型的那部分依賴兩種聚類技術(shù):

 

①概率潛在語義索引(PLSI):協(xié)同過濾的“第二代”概率技術(shù),,為了識別出有相似想法的用戶和相關(guān)物品的聚類,引入了隱藏變量,,對應(yīng)每個用戶—物品對的有限狀態(tài)集合,能適應(yīng)用戶可能同時對多個主題感興趣的情況,。

 

②MinHash:根據(jù)兩個用戶瀏覽過物品的交集將兩者放入相同的聚類(哈希桶)。為了讓這種哈希過程具有可擴(kuò)展性,,采用了一種特殊方法尋找近鄰,,并采用Google自己的MapReduce技術(shù)在幾個機(jī)群之間分發(fā)計算任務(wù)。

 

基于記憶的方法主要是分析“伴隨瀏覽量”,?!鞍殡S瀏覽量”指的是一篇文章在預(yù)先定義的一段時間內(nèi)被相同用戶瀏覽過。預(yù)測時需要遍歷活躍用戶近的歷史數(shù)據(jù)和從內(nèi)存里獲取鄰近的文章,。運(yùn)行時,,預(yù)先設(shè)定集合里候選物品的綜合推薦評分是這三種方法(MinHash、PLSI和伴隨瀏覽)獲得的分?jǐn)?shù)的線性組合計算值,,然后再根據(jù)計算值的高低進(jìn)行推薦結(jié)果的輸出,。

 

2.Linkedin為四個場景開發(fā)的系統(tǒng)

 

Linkedin主要是通過自主研發(fā)設(shè)計的協(xié)同過濾推薦平臺Browsemap實(shí)現(xiàn)個性化推薦,。Browsemap是Linkedin開發(fā)的一個實(shí)現(xiàn)了物品協(xié)同過濾推薦算法的泛化平臺,該平臺可支持Linkedin中所有實(shí)體的推薦,,包括求職者,、招聘貼、企業(yè),、社會群體(如學(xué)校等),、搜索詞等,若要通過該平臺實(shí)現(xiàn)某個新的實(shí)體協(xié)同過濾推薦,,開發(fā)者要做的工作僅僅包括:相關(guān)行為日志的接入,、編寫B(tài)rowsemap DSL配置文件和調(diào)整相關(guān)過期參數(shù)等簡單工作。

 

論文指出,,Browsemap平臺在Linkedin常用的有四個推薦場景:給求職者推薦公司,、相似公司推薦、相似簡歷推薦和搜索詞推薦等等,。

 

①給求職者推薦公司:通過Browsemap實(shí)現(xiàn)基于物品的協(xié)同過濾,,計算用戶和潛在意向公司的相似度值,得到相關(guān)公司特征,;將相關(guān)公司特征和用戶/公司內(nèi)容特征(包括用戶位置,、工作經(jīng)驗(yàn);企業(yè)產(chǎn)品,、相關(guān)描述)一起分析得到終的偏好分值,。

 

②相似公司推薦:與給求職者推薦公司有兩點(diǎn)不同:一是內(nèi)容特征相似度變?yōu)楣井嬒裰g的相似度;二是基于多種用戶行為構(gòu)建browsemap,。

 

③相似簡歷(用戶)推薦:通過公司詳情頁瀏覽行為和用戶畫像特征實(shí)現(xiàn)該部分推薦,。同時將相似簡歷的屬性用于補(bǔ)足簡歷的缺失屬性,得到該用戶的虛擬簡歷,。

 

④搜索詞推薦提供了四種關(guān)聯(lián)方式:一是協(xié)同過濾:在計算搜索詞間相關(guān)性時會加入時間和空間因素,;二是基于推薦搜索詞搜索結(jié)果的點(diǎn)擊率;三是基于搜索詞之間的重合度,;四是基于推薦搜索詞的點(diǎn)擊率,。但實(shí)驗(yàn)結(jié)果表明協(xié)同過濾的結(jié)果好,甚至也好于將這四種方式綜合的結(jié)果,。

 

3.今日頭條的三個階段

 

作為國內(nèi)當(dāng)紅的個性化推薦產(chǎn)品,,今日頭條技術(shù)經(jīng)歷了三個階段:

 

早期階段,以非個性化推薦為主,,重點(diǎn)解決熱文推薦和新文推薦,這個階段對于用戶和新聞的刻畫粒度也比較粗,,并沒有大規(guī)模運(yùn)用推薦算法,。

 

中期階段,,以個性化推薦算法為主,主要基于協(xié)同過濾和內(nèi)容推薦兩種方式,。協(xié)同過濾技術(shù)思想和前文介紹的并無差別,。基于內(nèi)容推薦的方式,,則是先對新聞進(jìn)行刻畫,,然后利用用戶的正反饋(如點(diǎn)擊,閱讀時長,、分享,、收藏、評論等)和負(fù)反饋(如不感興趣等)建立用戶和新聞標(biāo)簽之間的聯(lián)系,,從而來進(jìn)行統(tǒng)計建模,。

 

當(dāng)前階段,以大規(guī)模實(shí)時機(jī)器學(xué)算法為主,,用到的特征達(dá)千億級別,,能做到分鐘級更新模型。架構(gòu)分為兩層:檢索層,,有多個檢索分支,,拉出用戶感興趣的新聞候選;打分層,,基于用戶特征,、新聞特征、環(huán)境特征三大類特征使用實(shí)時學(xué)進(jìn)行建模打分,。值得一提的是,,實(shí)際排序時候并不完全按照模型打分排序,會有一些特定的業(yè)務(wù)邏輯綜合在一起進(jìn)行終排序并吐給用戶,。

 

頭條為何能取得成功,?文章分析,很多人會說是頭條的個性化推薦技術(shù)做得好,,其實(shí)不盡然,。原因在于,今日頭條的個性化推薦也是經(jīng)歷著復(fù)雜的演變過程:從人工推薦到機(jī)器推薦再到終不斷迭代算法和技術(shù),,反復(fù)的進(jìn)行驗(yàn)證,,日益完善。

 

(二)新派技術(shù)認(rèn)為:深度學(xué)才是明智選擇

 

新派技術(shù)主要指采用了深度學(xué)的個性化推薦系統(tǒng),。

 

深度學(xué)是機(jī)器學(xué)中一種基于對數(shù)據(jù)進(jìn)行表征學(xué)的方法,。觀測值(例如一幅圖像)可以使用多種方式來表示,如每個像素強(qiáng)度值的向量,或者更抽象地表示成一系列邊,、特定形狀的區(qū)域等,。而使用某些特定的表示方法更容易從實(shí)例中學(xué)任務(wù)(例如,人臉識別或面部表情識別),。深度學(xué)的好處是用非監(jiān)督式或半監(jiān)督式的特征學(xué)和分層特征提取高效算法來替代手工獲取特征,。

 

當(dāng)常規(guī)推薦算法已經(jīng)無法及時地分析處理體量較大的數(shù)據(jù)并準(zhǔn)確地針對獨(dú)立用戶做出推薦時,具備相應(yīng)技術(shù)水平的公司開始利用深度學(xué)解決海量內(nèi)容分析推薦的痛點(diǎn),。我們以較早開始引入深度學(xué)的YouTube,、Facebook為例進(jìn)行分析。

 

1.YouTube的神經(jīng)網(wǎng)絡(luò)

 

YouTube的推薦系統(tǒng)是是世界上規(guī)模大,、復(fù)雜的推薦系統(tǒng)之一,。YouTube的全球用戶已經(jīng)超過十億,每秒上傳的視頻長度以小時計,。視頻“語料”庫存日益增長,,就需要一個推薦系統(tǒng)及時、準(zhǔn)確地將用戶感興趣的視頻不斷推薦給用戶,。

 

相比其他商業(yè)推薦系統(tǒng),,Youtube推薦系統(tǒng)面臨三個主要的挑戰(zhàn):

 

①規(guī)模?,F(xiàn)有絕大多數(shù)可行的推薦算法,,在處理YouTube級別的海量視頻就力不從心了。

 

②新鮮度,。YouTube視頻“語料”庫不僅僅是儲量巨大,,每時每刻上傳的新增視頻也是源源不斷。推薦系統(tǒng)要及時針對用戶上傳的內(nèi)容進(jìn)行分析建模,,同時要兼顧已有視頻和新上傳視頻的平衡,。

 

③噪聲。由于用戶行為的稀疏性和不可觀測的影響因素,,用戶的歷史記錄本質(zhì)上難以預(yù)測,。

 

為了解決這些問題,YouTube推薦系統(tǒng)將研究重點(diǎn)轉(zhuǎn)移到深度學(xué),,使用Google Brain開發(fā)的TensorFlow(Google研發(fā)的第二代人工智能學(xué)系統(tǒng))系統(tǒng)為推薦系統(tǒng)帶來了開發(fā)測試上的靈活性,。

 

YouTube推薦系統(tǒng)主要由兩個深度神經(jīng)網(wǎng)絡(luò)組成:個神經(jīng)網(wǎng)絡(luò)用來生成候選視頻列表;第二個神經(jīng)網(wǎng)絡(luò)用來對輸入視頻列表打分排名,,以便將排名靠前的視頻推薦給用戶,。

 

候選視頻生成是依靠協(xié)同過濾算法產(chǎn)生一個寬泛的針對用戶的個性化推薦候選名單。排名神經(jīng)網(wǎng)絡(luò)是基于個候選生成網(wǎng)絡(luò)的列表,,提供更精細(xì)的區(qū)分細(xì)化,,從來達(dá)到較高的推薦命中率,。通過定義目標(biāo)函數(shù)來提供一系列描述視頻和用戶的特征,排名網(wǎng)絡(luò)則根據(jù)目標(biāo)函數(shù)來給每一個視頻打分,。分?jǐn)?shù)高的一組視頻就被推薦給用戶,。

 

正是YouTube海量級別的視頻才產(chǎn)生了深度學(xué)的需要,有效彌補(bǔ)了協(xié)同過濾存在地處理數(shù)據(jù)耗時長等問題,。

 

2.Facebook邁出的一大步

 

Facebook近10年來一直沿用其Newsfeed功能實(shí)現(xiàn)個性化推薦。2006年9月份,,NewsFeed(信息流)問世,,同時問世的還有MiniFeed(個人動態(tài))。NewsFeed是一個系統(tǒng)自動整合生成的內(nèi)容信息流,,它自行來決定我們讀到哪些新聞,、動態(tài)、事件,。它所覆蓋的范圍,,其信息推送的精準(zhǔn)度,以及其影響力遠(yuǎn)超過我們的想象,,可以說NewsFeed是Facebook在人工智能上所走的一大步,。

 

Facebook是如何利用深度學(xué)來評價內(nèi)容和用戶的呢?

 

,,在檢視文本方面,,F(xiàn)acebook使用“自然語言處理”技術(shù)來掃描每個人發(fā)的“狀態(tài)”和“日志”,以便“真正理解文本的語義”,,不僅如此還要將它們評級,。日志在掃描的過程中,系統(tǒng)會自動識別出“過度標(biāo)題黨”或者“過度商業(yè)化”的內(nèi)容,,而且這樣的內(nèi)容在NewFeed里面是越來越少見到了,。

 

第二,在內(nèi)容翻譯上,,當(dāng)在處理非英語的語言時,,F(xiàn)acebook工程師專門開發(fā)了一個深度學(xué)平臺,每一天會對100多種語言所寫成的文本進(jìn)行分析,,翻譯,。比如當(dāng)一個朋友以德語發(fā)表了一條動態(tài)時,NewsFeed會以英語體現(xiàn)出來給一個美國的朋友,,營造了一個能夠跨過語言障礙的,,人人實(shí)現(xiàn)互聯(lián)互通的數(shù)字虛擬環(huán)境。

 

第三,,在識別物體方面,,F(xiàn)acebook也在利用深度學(xué)技術(shù)來識別照片和視頻里面的物體,不僅如此,它還能進(jìn)一步地去探究誰有可能對這些照片感興趣,,或者這些照片跟哪些用戶相關(guān)聯(lián),,從而推薦給目標(biāo)用戶。

 

(三)深度學(xué)之困境

 

深度學(xué)能打遍天下無敵手嗎,?

 

至少目前來看,,深度學(xué)只是在Speech和Image這種比較“淺層”的智能問題上效果是比較明顯的,而對于語言理解和推理這些問題效果就有點(diǎn)失分,,也許未來的深度神經(jīng)網(wǎng)絡(luò)可以更“智能”的解決這個問題,,但目前還差點(diǎn)火候。

 

深度學(xué)在推薦系統(tǒng)領(lǐng)域的研究與應(yīng)用還處于早期階段,。即使深度學(xué)被認(rèn)為能夠解決協(xié)同過濾的冷啟動,、數(shù)據(jù)處理較慢的問題,但是風(fēng)光之下,,它也有自己的難言之隱,。

 

,成本太高,。數(shù)據(jù)對深度學(xué)的進(jìn)一步發(fā)展和應(yīng)用至關(guān)重要,。然而過分倚重有標(biāo)注的大數(shù)據(jù)也恰恰是深度學(xué)的局限性之一。數(shù)據(jù)收集是有成本的,,而且標(biāo)注成本已經(jīng)開始水漲船高,,這就使得深度學(xué)的成本過高。而且對于體量較小,、數(shù)據(jù)較少的眾多小公司來說,,即使有能力用深度學(xué)改善個性化推薦結(jié)果,也面臨著沒有數(shù)據(jù)支撐的尷尬境地,。

 

第二,,降低成本的方案有沒有?有,,但是難以實(shí)現(xiàn),。深度學(xué)分為有監(jiān)督學(xué)和無監(jiān)督學(xué),大量無監(jiān)督數(shù)據(jù)的獲取成本卻是微乎其微的,。目前一般用的都是監(jiān)督學(xué),,但本質(zhì)上基于監(jiān)督學(xué)的大多數(shù)推薦模型都很難徹底規(guī)避現(xiàn)存問題從而提高推薦質(zhì)量。無監(jiān)督學(xué)由于無需對數(shù)據(jù)進(jìn)行加標(biāo)簽等原因成本較有監(jiān)督學(xué)較低,,但目前深度學(xué)對無監(jiān)督數(shù)據(jù)的學(xué)能力嚴(yán)重不足,,因此深度學(xué)在推薦系統(tǒng)中的應(yīng)用仍處于早期階段。

 

新老派兩大力量相互抗?fàn)?、相互促進(jìn)但又相互交融,。傳統(tǒng)推薦技術(shù)在深度學(xué)的沖擊下不斷完善,,深度學(xué)帶著趕超傳統(tǒng)推薦技術(shù)的強(qiáng)勢勁頭不斷革新但也面臨著發(fā)展窘境。但正是在多個平臺的這種自我發(fā)展和革新的過程中,,新老派的界限也變得越來越模糊,,越來越走向融合。即使堅持完善傳統(tǒng)推薦技術(shù)的公司也開始慢慢涉足到深度學(xué)的領(lǐng)域中,,深度學(xué)發(fā)展較為成熟的新派也并沒有完全摒棄老派技術(shù),,那么,未來到底何派為王,?

 

四.未來鹿死誰手,?

 

內(nèi)容C2M,本質(zhì)上是對人心的一種洞察和預(yù)測,。技術(shù)與人心的斗法,并非一朝一夕便能奏功,。人類思想的根本特征在于“意識”,,即個體理解自己與他人的心理狀態(tài),包括情緒意圖,、期望,、思考和信念等,并借此信息預(yù)測和解釋他人行為的一種能力,。

 

但是,,當(dāng)前的人工智能領(lǐng)域中存在著一個很嚴(yán)重的問題:人們誤解了深度學(xué)模型的工作機(jī)理,并高估了網(wǎng)絡(luò)模型的能力,。

 

通過深度學(xué),,我們可以訓(xùn)練出一個模型,它可以根據(jù)圖片內(nèi)容生成文字描述,。這個過程被視作機(jī)器“理解”了圖片和它生成的文字,。當(dāng)某個圖像存在輕微改變,導(dǎo)致模型開始產(chǎn)生相當(dāng)荒謬的字幕時,,結(jié)果就會讓人非常驚訝—模型失靈了,。機(jī)器能找出一只貓,但機(jī)器仍然不能識別跟貓相關(guān)的所有信息,。

 

回顧歷史不難發(fā)現(xiàn),,技術(shù)一直追求的目標(biāo),與其說是讓機(jī)器替代人類,,而不如說是制造聰明的機(jī)器來提高效率,。協(xié)同過濾技術(shù)的發(fā)展便是個明顯的例子。

 

近幾年來,,互聯(lián)網(wǎng)巨頭制造“聰明的機(jī)器”的積極性異常高漲,,也是效率使然,。根據(jù)微軟研究院的估計,亞馬遜網(wǎng)站上大約30%的頁面瀏覽來自于推薦系統(tǒng),;Netflix首席產(chǎn)品官聲稱80%以上的電影觀看來自于推薦系統(tǒng),,并稱Netflix推薦系統(tǒng)的價值每年高達(dá)十億美元;據(jù)阿里巴巴披露數(shù)字,,2013年當(dāng)天由推薦直接引導(dǎo)的成交總額為56.8億元,。今日頭條則將公司核心業(yè)務(wù)架構(gòu)在推薦引擎上,是當(dāng)今重視推薦技術(shù)的公司之一……

 

在內(nèi)容C2M發(fā)展歷程中,,盡管深度學(xué)存在許多不足,,但深度學(xué)主導(dǎo)未來是大概率事件。我們看到代表著傳統(tǒng)推薦技術(shù)和深度學(xué)的新老派在相互促進(jìn)和相互融合,,在全球流量前20的平臺中,,雖然有不少公司依然沿用采用協(xié)同過濾技術(shù),比如Google新聞,,LinkedIn等,,但是其中一些公司也已經(jīng)準(zhǔn)備甚至已經(jīng)采用深度學(xué)等技術(shù)來改進(jìn)自身不足。而YouTube,、Facebook等先行者已開始享受深度學(xué)的紅利,。

 

從飼養(yǎng)員模式到聰明的機(jī)器,內(nèi)容產(chǎn)業(yè)的C2M已然成勢,,顛覆日,,不遠(yuǎn)了。

 

我們可以相信,,雖然深度學(xué)還存在著一些制約因素,,但是,隨著AI技術(shù)和產(chǎn)業(yè)的強(qiáng)勁發(fā)展,,技術(shù)上的瓶頸終究會被突破,。

 

需要警惕的是,在C2M跨越了準(zhǔn)確,、隱私兩座大山后,,人類通過AI掌握了新的力量,掌握者的欲望和野心,,也應(yīng)該受到一定的控制,,尤其是價值觀問題,將顯得越發(fā)重要,。


上一篇:阿里影業(yè)為未來增持淘票票

下一篇:暫無

【返回列表】
網(wǎng)站首頁 關(guān)于我們 產(chǎn)品中心 新聞資訊 客戶案例 安全須知 招商加盟 聯(lián)系我們 人才招聘

電話:400-887-6652傳真:Copyright ? 2012-2018阜城縣學(xué)澤機(jī)械加工廠 版權(quán)所有 Powered by EyouCms

地址:阜城縣學(xué)澤機(jī)械加工廠